
Collaborative Surveillance of Large 
Geographic Area by Fleet of Drones

sdmay23-50

Advisor: Professor Goce Trajcevski
Graduate Student: Prabin Giri

Rowan Collins, Joe Edeker, Jaden Forde, Thomas Glass, Jacob Houts, Marcus Jakubowsky 

1



Project Introduction
- Drone Fleet Algorithms

- Events & Response

- Simulation vs Real-world
- Customizable Setup/Input & Algorithms
- Visualize Runs & Drone Paths
- Request Queue System

2Final Report, Section 1.2



Drone Fleet Algorithms Overview
- Algorithms assume a square grid 

divided into zones, one drone per zone
- Additional roaming drones fly around 

to assist scanning
- Goal: When a drone detects an event, 

roaming drone flies to assist
- 2 Algorithms Provided

- Naive
- Coordinated Path-Hop (CPH)

3

Naive

CPH



Implementation Architecture

4



Implementation Architecture (System)

5Final Report, Section 2.1



Implementation Architecture (Frontend)

6Final Report, Section 2.3



Implementation Architecture (Backend)

7Final Report, Sections 1.5, 2.2



Work Accomplishments

8



Work Accomplishments (Frontend)
Simulation Setup:

- Ability to upload algorithms
- Send run request with specified parameters
- Import data from csv

Simulation Visualization:
- Grid to view drones
- Algorithm comparison

Dashboard:
- Web application navigation
- Display request queue and completion data

9Final Report, Section 2.3



Work Accomplishments (Frontend)
Simulation Comparison:

- Comparing drone simulation outputs side by side.
- View difference in success criteria for 1 to many Outputs.

10



Work Accomplishments (Backend)

11

Spring Boot:
- User signup & login
- Algorithm file upload
- Run simulation requests
- Enqueue requests
- Simulation status, output & pathing

Python:
- Receive queued requests
- Drone algorithm execution
- Save output to database
- Create flight paths

Final Report, Section 2.2



Other:
- Tech stack running in Docker
- CI/CD pipeline automatically deploys changes
- RabbitMQ initialization for queue system
- Token authentication w/Spring Security

Work Accomplishments (Other)

12



Web Application Visuals

13



Dashboard

14



Simulation Setup

15



Simulation Comparison

16



Simulation Visualization

17



Team Member Contributions

18



Key Contributions
Rowan Collins
- Infrastructure: Database Initialization
- Spring Boot: File uploading, File storage, Code Refactoring
- Testing: Spring Boot - Algorithm Files, Input File Service

Joe Edeker 
- Frontend: Vite (Development, Routing), React + Blueprint, Layouts, Navigation, 
Setup, View, Grid Visualization

Jaden Forde
- Python: RabbitMQ integration, drone algorithm file modification, input 
loading, algorithm execution, database result logging

19



Key Contributions
Thomas Glass 
- Frontend: Setup and Dashboard (React + Blueprint)
- Drone Algorithm Research

Jacob Houts:
- Infrastructure: File storage
- Spring Boot: Initial Setup, File uploading, Run Initialization, Code Refactoring
- Frontend: Simulation Comparison Page, Session Storage, Uploading local I/O
- Testing: Spring Boot - Run Requests

Marcus Jakubowsky
- Spring Boot: Users, Algorithms, Input, Output, Run Requests, Queue, Path, Authentication
- Python: Path mapping
- Frontend: Signup, Login, Request authorization
- Infrastructure: Docker, RabbitMQ, CI/CD, Server
- Testing: Spring Boot - Algorithms, Users, Postman

20



Challenges & Solutions

21



Challenges and Solutions
Frontend:

- Page routing
- Vite-SSR-Plugin

- UI Components
- Blueprint

- Drone path visuals
- Custom Polynomial Curve Calculations

- API Request Authentication
- CORS implementation in Spring

22



Challenges and Solutions
Backend:

- Running Python algorithms
- Created Python backend service to handle

- Python algorithm files not standardized (hardcoded)
- Refactor initial given algorithms & create compliance standard

- Queuing requests
- RabbitMQ

- Sharing file system across services (docker containers)
- Use mounted volumes to share file locations

- Tracking repeat simulation setups
- Hash input combination and store for future reference

23



Testing
- Unit Testing

- JUnit and Mockito
- Account Creation
- Run Requests

- Interface Testing
- Manual Testing
- SQL Injection Testing

- Python Backend Testing
- Manual testing with known inputs

- Acceptance Testing
- CI/CD

24Final Report, Section 3



Demo

25



Short Demo Video

26

https://docs.google.com/file/d/12L7wmKEVUHkMXszH3tqdOtwdRKwb78go/preview


Future Work

27



Future Work
- Expand setup parameters

- Partitions (overlap, sizing)
- Drone start positions

- Enhance security standards
- Plaintext login/registration
- Run simulations in restricted containers

- Additional simulation statistics
- Pathing for CPH algorithm
- Additional/Modular algorithms support

- Standard format (input/output, runner method)
- Multiple languages

- Email notifications

28



Conclusion

29



Conclusion
Completed Work (Frontend):

- Upload user algorithms & simulation setup
- Output stats comparison
- Path visualization

Completed Work (Backend):
- APIs for user authentication, algorithm upload, run request processing
- Asynchronous queue processing
- Python simulation execution w/response outputs & pathing

30Final Report, Section 5



Conclusion (Project Objectives)
- Ability to upload input and execute simulations

- Based on specified parameters
- Algorithms run on backend server

- Output data to frontend
- Visualize events and drone movements
- Extendable application

What does this mean?
- Display research algorithms in ways which are easy to understand
- Easy to modify for future research algorithms
- Potential for real-world use in drone fleet testing

31Final Report, Section 5



Thank you!

32



Questions?

33


