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Project Introduction
- Drone Fleet Algorithms

- Events & Response

- Simulation vs Real-world
- Customizable Setup/Input & Algorithms
- Visualize Runs & Drone Paths
- Request Queue System

2Final Report, Section 1.2



Drone Fleet Algorithms Overview
- Algorithms assume a square grid 

divided into zones, one drone per zone
- Additional roaming drones fly around 

to assist scanning
- Goal: When a drone detects an event, 

roaming drone flies to assist
- 2 Algorithms Provided

- Naive
- Coordinated Path-Hop (CPH)
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Implementation Architecture
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Implementation Architecture (System)

5Final Report, Section 2.1



Implementation Architecture (Frontend)
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Implementation Architecture (Backend)
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Work Accomplishments
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Work Accomplishments (Frontend)
Simulation Setup:

- Ability to upload algorithms
- Send run request with specified parameters
- Import data from csv

Simulation Visualization:
- Grid to view drones
- Algorithm comparison

Dashboard:
- Web application navigation
- Display request queue and completion data
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Work Accomplishments (Frontend)
Simulation Comparison:

- Comparing drone simulation outputs side by side.
- View difference in success criteria for 1 to many Outputs.
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Work Accomplishments (Backend)
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Spring Boot:
- User signup & login
- Algorithm file upload
- Run simulation requests
- Enqueue requests
- Simulation status, output & pathing

Python:
- Receive queued requests
- Drone algorithm execution
- Save output to database
- Create flight paths
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Other:
- Tech stack running in Docker
- CI/CD pipeline automatically deploys changes
- RabbitMQ initialization for queue system
- Token authentication w/Spring Security

Work Accomplishments (Other)
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Web Application Visuals
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Dashboard
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Simulation Setup
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Simulation Comparison
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Simulation Visualization
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Team Member Contributions
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Key Contributions
Rowan Collins
- Infrastructure: Database Initialization
- Spring Boot: File uploading, File storage, Code Refactoring
- Testing: Spring Boot - Algorithm Files, Input File Service

Joe Edeker 
- Frontend: Vite (Development, Routing), React + Blueprint, Layouts, Navigation, 
Setup, View, Grid Visualization

Jaden Forde
- Python: RabbitMQ integration, drone algorithm file modification, input 
loading, algorithm execution, database result logging
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Key Contributions
Thomas Glass 
- Frontend: Setup and Dashboard (React + Blueprint)
- Drone Algorithm Research

Jacob Houts:
- Infrastructure: File storage
- Spring Boot: Initial Setup, File uploading, Run Initialization, Code Refactoring
- Frontend: Simulation Comparison Page, Session Storage, Uploading local I/O
- Testing: Spring Boot - Run Requests

Marcus Jakubowsky
- Spring Boot: Users, Algorithms, Input, Output, Run Requests, Queue, Path, Authentication
- Python: Path mapping
- Frontend: Signup, Login, Request authorization
- Infrastructure: Docker, RabbitMQ, CI/CD, Server
- Testing: Spring Boot - Algorithms, Users, Postman
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Challenges & Solutions
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Challenges and Solutions
Frontend:

- Page routing
- Vite-SSR-Plugin

- UI Components
- Blueprint

- Drone path visuals
- Custom Polynomial Curve Calculations

- API Request Authentication
- CORS implementation in Spring
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Challenges and Solutions
Backend:

- Running Python algorithms
- Created Python backend service to handle

- Python algorithm files not standardized (hardcoded)
- Refactor initial given algorithms & create compliance standard

- Queuing requests
- RabbitMQ

- Sharing file system across services (docker containers)
- Use mounted volumes to share file locations

- Tracking repeat simulation setups
- Hash input combination and store for future reference
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Testing
- Unit Testing

- JUnit and Mockito
- Account Creation
- Run Requests

- Interface Testing
- Manual Testing
- SQL Injection Testing

- Python Backend Testing
- Manual testing with known inputs

- Acceptance Testing
- CI/CD
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Demo
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Short Demo Video
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https://docs.google.com/file/d/12L7wmKEVUHkMXszH3tqdOtwdRKwb78go/preview


Future Work
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Future Work
- Expand setup parameters

- Partitions (overlap, sizing)
- Drone start positions

- Enhance security standards
- Plaintext login/registration
- Run simulations in restricted containers

- Additional simulation statistics
- Pathing for CPH algorithm
- Additional/Modular algorithms support

- Standard format (input/output, runner method)
- Multiple languages

- Email notifications
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Conclusion
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Conclusion
Completed Work (Frontend):

- Upload user algorithms & simulation setup
- Output stats comparison
- Path visualization

Completed Work (Backend):
- APIs for user authentication, algorithm upload, run request processing
- Asynchronous queue processing
- Python simulation execution w/response outputs & pathing
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Conclusion (Project Objectives)
- Ability to upload input and execute simulations

- Based on specified parameters
- Algorithms run on backend server

- Output data to frontend
- Visualize events and drone movements
- Extendable application

What does this mean?
- Display research algorithms in ways which are easy to understand
- Easy to modify for future research algorithms
- Potential for real-world use in drone fleet testing
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Thank you!
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Questions?
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